Abstract
AbstractIncreases in soil salinity impacts growth and yield of agricultural plants by inhibiting plant functions. Soil salinization is increasing because of the pressure of a growing population on food supply. Genetically modified crops and plant breeding techniques are being used to produce plants tolerant to salt stress. However, interactions of fungal endophytes with crop plants can also improve tolerance and is a less expensive approach. Here, the role ofTrichoderma harzianumT-22 in alleviating NaCl-induced stress in two barley genotypes (cv. Vlamingh and cv. Gairdner) has been investigated. Metabolomics using GC-MS for polar metabolites and LC-MS for lipids was employed to provide insights into the biochemical changes in barley roots inoculated with fungus during the early stages of interaction.T. harzianumincreased the root length of both genotypes under controlled and saline conditions. The fungus reduced the relative concentration of sugars in both genotypes and caused no change in organic acids under saline conditions. Amino acids decreased only in cv. Gairdner in fungus-inoculated roots under saline conditions. Lipid analyses suggest that salt stress causes large changes in the lipid profile of roots but that inoculation with fungus greatly reduces the extent of these changes. By studying a tolerant and a sensitive genotype and their responses to salt and inoculation we have been able to develop hypotheses about what lipid species and metabolites may be involved in the tolerant genotype for its tolerance to salt and how fungal inoculation changes the response of the sensitive genotype to improve its tolerance.
Submitted Version (
Free)
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have