Abstract

Toll-like receptor 3 (TLR3), a pathogen recognition receptor of the innate immune response, recognizes and is activated by double-stranded RNA (dsRNA), which is indicative of viral exposure. A sensor design exercise was conducted, using surface plasmon resonance detection, through the examination of several immobilization approaches for TLR3 as a biorecognition element (BRE) onto a modified gold surface. To examine the TLR3-dsRNA interaction a synthetic analogue mimic, poly (I:C), was used. The interaction binding characteristics were determined and compared to literature data to establish the optimal immobilization method for the TLR3 BRE. A preliminary evaluation of the efficacy of the selected TLR3 surface as a broad-spectrum viral biosensor was also performed. Amine-coupling was found to be the most reliable method for manufacturing repeatable and consistent TLR3 BRE sensor surfaces, although this immobilization schema is not tailored to place the receptor in a spatially-specific orientation. The equilibrium dissociation constant (KD) measured for this immobilized TLR3-poly (I:C) interaction was 117 ± 3.30 pM. This evaluation included a cross-reactivity study using a selection of purified E. coli and synthetic double- and single-stranded nucleic acids. The results of this design exercise and ligand binding study will inform future work towards the development of a broad-spectrum viral sensor device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.