Abstract

ABSTRACT Iron (Fe) and manganese (Mn) are the most frequently detected heavy metals in the soil and groundwater near municipal landfill sites. Natural calcium-carbonate-based materials, such as dolomite, effectively remove metal ions and are suitable as reactive materials for permeable reactive barriers (PRBs). However, multiple heavy metals usually coexist in contaminated groundwater, the effectiveness and competitive precipitation mechanisms in the removal of Fe(III) and Mn(II) are unclear. In this study, we investigated the efficiency and influencing factors of the removal of single and coexisting Fe(III) and Mn(II) by dolomite through experimental batch and column tests, property characterization, and PHREEQC simulations. Dolomite with 1.18–2.36 mm particle size showed the best removal efficiency for Fe(III) and Mn(II) through precipitation. Fe(III) was preferentially precipitated by dolomite with higher removal efficiency, attributed to the lower solubility product (Ksp) of iron precipitates. Compared with Fe(III), Mn(II) was precipitated conditionally, and the removal efficiency was restricted by the concentration of Fe(III) in the system. Considering the application of PRB in the field, dolomite would be effective for the remediation of coexisting heavy metals with lower precipitate Ksp. The half-time of Mn(II) removal could serve as a reference for PRB thickness designs if the target metal contaminants were in a similar concentration range as Fe(III) and Mn(II). Additionally, the PRB performance could be affected by the reduction of hydraulic permeability induced by precipitation, and the fine precipitates migrating from PRB might affect downstream groundwater quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.