Abstract

In this work, we present new evidence of the physical mechanism behind the generation of low-frequency noise with high interface-trap density by measuring the low-frequency noise magnitudes of partially depleted (PD) silicon-on-insulator (SOI) NMOSFETs as a function of irradiation dose. We measure the DC electrical characteristics of the devices at different irradiation doses and separate the threshold-voltage shifts caused by the oxide-trap charge and interface-trap charge. Moreover, the increased densities of the oxide-trap charge projected to the Si/SiO2 interface and interface-trap charge are calculated. The results of our experiment suggest that the magnitudes of low-frequency noise do not necessarily increase with the increase in border-trap density. A novel physical explanation for the low-frequency noise in SOI-NMOSFETs with high interface-trap density is proposed. We reveal that the presence of high-density interface traps after irradiation has a repressing effect on the generation of low-frequency noise. Furthermore, the exchange of some carriers between border traps and interface traps can cause a decrease in the magnitude of low-frequency noise when the interface-trap density is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.