Abstract

In high-power laser systems, the large-aperture continuous phase plates (CPPs) are designed and fabricated with continuous varying structured topography to serve as the class of phase-modulating beam-conditioning optics. To achieve better optical performance, its fabrication highly depends on the reiterative figuring to eliminate the form error relative to the designed CPP surface. However, the characteristics of large aperture and complex structured topography make the quality inspection of CPPs still challenging. A typical inspection process includes measuring the CPPs with the sub-aperture stitching technique, followed by the characterization procedure with respect to the CPP design description. This paper proposes an innovative stitching-embedded characterization method for imprinting the large-aperture CPPs, which combines the sub-aperture stitching and characterization procedure together. First, the concept and mathematical model of the stitching-embedded characterization method is presented. Then, both numerical simulations and experiments were undertaken to verify the proposed method, and the results demonstrate its feasibility and reasonability to provide the more reliable form error evaluation while simplify the analysis procedure compared with the conventional inspection process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.