Abstract

Raman spectra of acetic acid aqueous solutions in the 500-4000 cm(-1) range have been measured as a function of water concentration to investigate the hydration shell formation mechanism around the acetic acid molecules. A fitting procedure based on the Kubo-Anderson model has been applied to the spectra. This has allowed us to determine the average lifetime of the hydrogen bonds involving a given functional group, as well as their geometrical distribution as a function of water concentration. The comparison of our results with literature data has demonstrated that the fitting model is adequate to describe organic water mixtures. Finally, the role of water in the formation of the hydrophobic shell around the methyl group in diluted acetic acid water solutions has been discussed, evidencing how the methyl group hydrophobicity strongly influences the acetic acid behavior in aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.