Abstract

A two-dimensional (2D) jet flow and temperature field are simulated by usingk-εT. C. model and compared with other three nontemperature corrected models, which are standardk-ε, RNGk-ε, and SSTk-ωmodel. Then based on the calculated results, the spectral infrared radiation characteristics within 4∼5 μm of the 2D jet flow were calculated. By comparing the computed results of the velocity, temperature field, and infrared radiation with the experimental measurements, it shows that thek-εT. C. model predicts mean flow mixing more rapidly and the turbulent kinetic energy dissipates earlier than with no temperature correction; thek-εT. C. model could give a good prediction for the velocity and temperature distributions on the centerline of the 2D hot gas jet, but not on the locations off the centerline. The maximum computation error of the 2D hot jet infrared radiation is decreased from 86% to 26%, and the accuracy of the computation is greatly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.