Abstract
3-D ordered macroporous carbon with different polymer coatings were developed as new oral vaccine immunological systems. Poly dimethyl diallyl ammonium (PDDA), polyethyleneimine (PEI) and chitosan (CTS), three different polymers with electropositive or adsorption-promoting properties, were chosen as the coating materials to endow the vaccine delivery systems with different surface properties. The bovine serum albumin (BSA) was used as a model vaccine. The three different polymer coated systems exhibited similar release rate which minimized the influence of release rate. The measured value of immunoglobulin G (IgG) titers suggested that the sustained release rate of BSA from polymer coated systems exhibited no strengthened effect on the immune response but could delay the appearance of the peak of the IgG titers compared with uncoated system. The electrostatic attraction between the mucosal and positively charged carrier would be useful during the whole immune experiment. In addition, using the coating material with the ability of enhancing mucosal adsorption was important in the mid-late period of immune. The immunoglobulin A (IgA) titers induced by the polymer coated systems were significantly higher than that induced by the oral BSA solution or i.m. BSA with Freund’s complete adjuvant (FCA) which suggested the successful mucosal immune response of the three different coated systems. Overall, this work provides valuable information for the development of oral vaccine delivery system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.