Abstract

AbstractManganese dioxide (MnO2), with naturally abundant crystal phases, is one of the most active candidates for toluene degradation. However, it remains ambiguous and controversial of the phase–activity relationship and the origin of the catalytic activity of these multiphase MnO2. In this study, six types of MnO2 with crystal phases corresponding to α‐, β‐, γ‐, ε‐, λ‐, and δ‐MnO2 are prepared, and their catalytic activity toward ozone‐assisted catalytic oxidation of toluene at room temperature are studied, which follow the order of δ‐MnO2 > α‐MnO2 > ε‐MnO2 > γ‐MnO2 > λ‐MnO2 > β‐MnO2. Further investigation of the specific oxygen species with the toluene oxidation activity indicates that high catalytic activity of MnO2 is originated from the rich oxygen vacancy and the strong mobility of oxygen species. This work illustrates the important role of crystal phase in determining the oxygen vacancies’ density and the mobility of oxygen species, thus influencing the catalytic activity of MnO2 catalysts, which sheds light on strategies of rational design and synthesis of multiphase MnO2 catalysts for volatile organic pollutants’ (VOCs) degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.