Abstract
BackgroundHuman hair is one of the essential components that define appearance and is a useful source of samples for non-invasive biomonitoring. We describe a novel application of imaging mass spectrometry (IMS) of hair biomolecules for advanced molecular characterization and a better understanding of hair aging. As a cosmetic and biomedical application, molecules whose levels in hair altered with aging were comprehensively investigated.MethodsHuman hair was collected from 15 young (20±5 years old) and 15 older (50±5 years old) volunteers. Matrix-free laser desorption/ionization IMS was used to visualize molecular distribution in the hair sections. Hair-specific ions displaying a significant difference in the intensities between the 2 age groups were extracted as candidate markers for aging. Tissue localization of the molecules and alterations in their levels in the cortex and medulla in the young and old groups were determined.ResultsAmong the 31 molecules detected specifically in hair sections, 2—one at m/z 153.00, tentatively assigned to be dihydrouracil, and the other at m/z 207.04, identified to be 3,4-dihydroxymandelic acid (DHMA)—exhibited a higher signal intensity in the young group than in the old, and 1 molecule at m/z 164.00, presumed to be O-phosphoethanolamine, displayed a higher intensity in the old group. Among the 3, putative O-phosphoethanolamine showed a cortex-specific distribution. The 3 molecules in cortex presented the same pattern of alteration in signal intensity with aging, whereas those in medulla did not exhibit significant alteration.ConclusionThree molecules whose levels in hair altered with age were extracted. While they are all possible markers for aging, putative dihydrouracil and DHMA, are also suspected to play a role in maintaining hair properties and could be targets for cosmetic supplementation. Mapping of ion localization in hair by IMS is a powerful method to extract biomolecules in specified regions and determine their tissue distribution.
Highlights
Roles of human hair Hair significantly influences the appearance and is one of the components of the human body that determine how individuals look for their age [1]
Hair has been utilized as trace evidence for the investigation and successful prosecution of individuals suspected of being involved in crimes [7]
Matrix-assisted laser desorption/ionization (LDI) or LDI-based imaging mass spectrometry (IMS) enables the analysis of much larger biomolecules because of the soft ionization principle used and is a powerful tool for investigating biomolecules comprehensively without the use of time-consuming extraction, purification, or separation procedures for biological tissue sections [15,16,17]
Summary
Roles of human hair Hair significantly influences the appearance and is one of the components of the human body that determine how individuals look for their age [1]. Hair changes chemically and physically as a result of various environmental assaults and undergoes intrinsic degeneration with aging, resulting in an alteration of its appearance, e.g., color and shine; feel, e.g., wettability and softness; and structure, e.g., formation of split ends and frizz [2]. Hair has been utilized as trace evidence for the investigation and successful prosecution of individuals suspected of being involved in crimes [7]. Human hair is one of the essential components that define appearance and is a useful source of samples for non-invasive biomonitoring. As a cosmetic and biomedical application, molecules whose levels in hair altered with aging were comprehensively investigated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.