Abstract

Flame retardant (FR) textiles were obtained by surface treatments of polyamide 66 fabrics with microwave (MW) plasma technology in order to reduce the amount of FR involved in the fabric finishing process. More specifically, MW vacuum plasma was employed for polymer surface activation by using a helium/oxygen (He/O2) gas mixture, evaluating the effect of different treatment parameters on the affinity toward thiourea impregnation. Surface fabric modification was investigated both in terms of uniformity and increased thiourea absorption by infrared spectroscopy, wicking properties, and gravimetric characterization to define an operative window for plasma treatment conditions. According to the results obtained, the dry add-on content of thiourea improved up to 38%, thanks to the increase of the fabric surface activation. The effectiveness of plasma treatment resulted in an absolute increase up to 2% in limiting oxygen index (LOI) performance with respect to untreated fabric. As a consequence, a drastic reduction of 50% in thiourea concentration was required to achieve a similar fire retardant performance for plasma-treated fabric. On the basis of these preliminary results, a design of experiment (DoE) methodology was applied to the selected parameters to build a suitable response surface, experimentally validated, and to identify optimized treatment conditions. At the end, a final LOI index up to 43% has been reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.