Abstract

Virtual Reality (VR) has emerged as a promising solution to address the pressing concern of transferring know-how in the manufacturing industry. Making an immersive training experience often involves designing an instrumented replica of a tool whose use is to be learned through virtual training. The process of making a replica can alter its mass, making it different from that of the original tool. As far as we know, the influence of this difference on learning outcomes has never been evaluated. To investigate this subject, an immersive training experience was designed with pre and post-training phases under real conditions, dedicated to learning the use of a rotary tool. 80 participants took part in this study, split into three groups: a control group performing the virtual training using a replica with the same mass as the original tool ($\mathrm{m}=100\%$), a second group that used a replica with a lighter mass than the original tool ($\mathrm{m}= 50\%$) and a third group using a replica heavier than the original tool ($\mathrm{m}=150\%$). Despite variations in the mass of the replica used for training, this study revealed that the learning outcomes remained comparable across all groups, while also demonstrating significant enhancements in certain performance measures, including task completion time. Overall, these findings provide useful insights regarding the design of tool replicas for immersive training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.