Abstract

The local transport characteristics and the global polarization curve for a self-made micro proton exchange membrane fuel cell (PEMFC) have been experimentally and numerically investigated in this paper. The micro-sensors are developed to measure the local fluid temperature, cell voltage, and current density and the fuel cell test system is used to measure the polarization curve. A three-dimensional (3-D) non-isothermal compressible computational fluid dynamics (CFD) full-cell model is also adopted to simulate the test micro PEMFC. This CFD model has been validated with these global and local data. The ionic conductivity is increased as the water content in the membrane increases, enhancing the cell performance. This positive effect of inlet fuel humidity on the cell performance is also captured by the CFD simulation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.