Abstract

In this study, density functional theory (DFT) within generalized gradient approximation (GGA) as implemented in Quantum ESPRESSO package has been employed. The structural, electronic, and magnetic properties of single Vanadium atom (V)-doped germanene monolayer have been investigated. The doping is carried out in 2x2x1 supercell with 32 atoms which gives around 3.12% doping concentration. The results revealed that single V atom doped Germanene monolayer induced both ferromagnetic and antiferromagnetic behavior with total magnetic moment of about 0.77 μB and 1.95 μB respectively. Also the behavior of the pristine germanene remains unaffected by the single V doping. The stability of the doped system are investigated by calculating cohesive and binding energies. These results are in good agreement with many reported results in case of both graphene and silicene. It’s also suggested that, the single V-doped germanene monolayer can support the quantum anomalous Hall effect, which has significant potential for spintronic applications.Keyword: Density Functional Theory (DFT), Generalized Gradient Approximation (GGA), Structural, Electronic and Magnetic Properties, Doping, Germanene Monolayer

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.