Abstract

The impact of different loading modalities on bone quality is a crucial area of study for understanding athletic performance and injury prevention. This research investigates how high-impact, low-impact, and resistance training activities influence Bone Mineral Density (BMD), cortical thickness, trabecular number, and stiffness index among athletes from various sports disciplines. A total of 152 athletes from different regions in China were assessed using advanced diagnostic techniques, including Dual-energy X-ray Absorptiometry (DXA), Quantitative Ultrasound (QUS), and Peripheral Quantitative Computed Tomography (pQCT). The study also examines the interaction between demographic factors, such as age and gender, and their effects on bone adaptation. Statistical analyses, including Analysis of Variance (ANOVA) and effect size calculations, were employed to quantify the impact of each loading modality. Results reveal that high-impact sports significantly enhance BMD and bone microarchitecture, showing the highest effect sizes among all groups. Resistance training also demonstrates positive, though less pronounced, outcomes, while low-impact activities contribute minimally to bone development. The findings emphasize the importance of loading intensity and modality for optimizing bone health, providing evidence-based recommendations for athletes, coaches, and healthcare professionals to design effective training programs that enhance skeletal strength and prevent injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.