Abstract

Chitosan has been broadly utilized in bone scaffold production because of its antibacterial qualities, low toxicity, biodegradability, biocompatibility, and ability to aid regeneration processes in wound healing. In this work, chitosan was produced from crab shell waste through demineralization, deproteination, and deacetylation, utilizing HCl 1:7 (v/v), NaOH 3%, 1:10 (v/w), and NaOH 50%. The aim of this study is to examine the deacetylation temperature’s impact towards the crystallinity index, chemical bond, degree of deacetylation, and morphology of chitosan synthesized. The deacetylation procedure was conducted for eight hours at temperatures of 100°C, 120°C, and 140°C. The synthesized chitosan was evaluated by utilizing XRD, FTIR, and SEM methods. According to the findings of this investigation, deacetylation at a temperature of 140 °C produced the highest degree of deacetylation, resulting in the highest quality chitosan. In addition, compared to other obtained chitosans, the shape of this result of synthesis is homogenous. At a deacetylation temperature of 140°C, the amounts of deacetylation degree, and crystallinity index of the chitosan were, in order, 81%, and 44%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.