Abstract

Broadband microwave complex permittivity measurements of nanodiamond powders are presented. Previous studies show that measurements of dielectric loss strongly correlate with the presence of nondiamond surface impurities. In this study, the frequency dependence of these losses is investigated using the microwave cavity perturbation (MCP) and broadband coaxial probe (BCP) methods. This allowed further understanding as to what mechanisms contribute to the microwave absorption (free electron conduction or dielectric loss from the disordered surfaces). A multimode MCP system is used which utilizes ${\rm TM}_{0np}$ modes to provide partial spectral characterization. The MCP results revealed minimal frequency dependence, unlike any static conduction-related mechanism. The BCP measurements corroborate the MCP results with much higher spectral resolution, and further demonstrate that disorder related loss may dominate over free electron conduction from 1–10 GHz. From 0.1–1 GHz, free electron conduction has a greater influence with a characteristic $1/f$ dependence implying that conduction may dominate at lower frequencies. However, the BCP method, while repeatable, lacks in precision compared to the cavity method. Nonetheless, the major conclusion in this paper is that through simple microwave permittivity measurements, nondiamond carbon impurities in nanodiamond powders are measurable most likely because of disorder related losses as opposed to free electron conduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.