Abstract

Over the past few decades, researchers have argued that playing action video games can substantially improve cognitive abilities and enhance learning. However, consensus has not been reached regarding the mechanisms through which action game experience facilitates superior performance on untrained perceptually and cognitively demanding transfer tasks. We argue that analysis of behaviors engaged in during transfer task performance may provide key insights into answering this question. In the current investigation, we examined potential action game effects in the context of a complex psychomotor task, the Space Fortress (SF) game, that allows for the detailed examination of player behaviors beyond aggregate score reports. Performance (game score) was compared between action video game players (VGPs) and non-gamers (nVGPs) in two different control interface conditions (keyboard or joystick), followed by analyses of behaviors associated with superior performance. Against expectations, VGPs displayed superior performance only in the keyboard condition, suggesting that the action gamer advantage may not generalize to less-familiar control interfaces. Performance advantages were specifically associated with more efficient ship control behaviors by VGPs. Findings highlight how process-tracing approaches may provide insight into the nature of, and mechanisms producing, action gamers' advantages on learning untrained tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.