Abstract

E. coli strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that E. coli uses to adhere to cattle cells are largely unknown. Various strategies are used to control E. coli in livestock and limit the risk of outbreaks. These include vaccinating animals against common E. coli strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for E. coli adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic E. coli from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.