Abstract

This paper investigates Arabic speech recognition systems adaptation to foreign accented speakers. This adaptation scheme is accomplished by using the Maximum Likelihood Linear Regression (MLLR), Maximum a posteriori (MAP), and, then, combination of MLLR and MAP techniques. The HTK toolkit for speech recognition is used throughout all experiments. The systems were evaluated using both word and phoneme levels. The LDC West Point Modern Standard Arabic (MSA) corpus is used throughout the experiments. Results show that particular Arabic Phonemes such as pharyngeal and emphatic consonants, that are hard to pronounce for non-native speakers, benefit from the adaptation process using MLLR and MAP combination. An overall improvement of 7.37% has been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.