Abstract

In this paper, we analyse in detail the impact of different strategies to be used as fitness function during the evolutionary cycle of a hyper-heuristic evolutionary algorithm that automatically designs decision-tree induction algorithms (HEAD-DT). We divide the experimental scheme into two distinct scenarios: (1) evolving a decision-tree induction algorithm from multiple balanced data sets; and (2) evolving a decision-tree induction algorithm from multiple imbalanced data sets. In each of these scenarios, we analyse the difference in performance of well-known classification performance measures such as accuracy, F-Measure, AUC, recall, and also a lesser-known criterion, namely the relative accuracy improvement. In addition, we analyse different schemes of aggregation, such as simple average, median, and harmonic mean. Finally, we verify whether the best-performing fitness functions are capable of providing HEAD-DT with algorithms more effective than traditional decision-tree induction algorithms like C4.5, CART, and REPTree. Experimental results indicate that HEAD-DT is a good option for generating algorithms tailored to (im)balanced data, since it outperforms state-of-the-art decision-tree induction algorithms with statistical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.