Abstract

The majority of studies performed on the formation of surface features by femtosecond laser radiation focuses on single scan procedures, i.e. manipulating the laser beam once over the target area to fabricate different surface topographies. In this work, the effect of scanning stainless steel 304 multiple times with femtosecond laser pulses is thoroughly investigated over a wide range of fluences. The resultant laser-induced surface topographies can be categorized into two different regimes. In the low fluence regime (FΣline,max<130J/cm2), ellipsoidal cones (randomly distributed surface protrusions covered by several layers of nanoparticles) are formed. Based on chemical, crystallographic, and topographical analyses, we conclude that these ellipsoidal cones are composed of unablated steel whose conical geometry offers a significant degree of fluence reduction (35–52%). Therefore, the rest of the irradiated area is preferentially ablated at a higher rate than the ellipsoidal cones. The second, or high fluence regime (FΣline,max>130J/cm2) consists of laser-induced surface patterns such as columnar and chaotic structures. Here, the surface topography showed little to no change even when the target was scanned repeatedly. This is in contrast to the ellipsoidal cones, which evolve and grow continuously as more laser passes are applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.