Abstract
Consider a Riemannian manifold in dimension with a strictly convex boundary. We prove the local invertibility, up to potential fields, of the geodesic ray transform on tensor fields of rank four near a boundary point. This problem is closely related to elastic qP-wave tomography. Under the condition that the manifold can be foliated with a continuous family of strictly convex hypersurfaces, the local invertibility implies a global result. One can straightforwardedly adapt the proof to show similar results for tensor fields of arbitrary rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.