Abstract

Here we report for the first time highly flexible quantum dot light-emitting diodes (QLEDs), in which a layer of red-emitting colloidal silicon quantum dots (SiQDs) works as the optically active component, by replacing a rigid glass substrate with a thin sheet of polyethylene terephthalate (PET). The enhanced optical performance for electroluminescence (EL) at room temperature in air is achieved by taking advantage of the inverted device structure. Our QLEDs do not exhibit parasitic EL emissions from the neighboring compositional layers or surface states of QDs over a wide range of driving voltages and do not exhibit a shift in the EL peak position as the operational voltage increases. Compared to the previous Si-QLEDs with a conventional device structure, our QLED has a longer device operational lifetime and a long-lived EQE value. The currently obtained brightness (∼5000 cd/m2), the 3.1% external quantum efficiency (EQE), and a turn-on voltage as low as 3.5 V are sufficiently high to encourage further developments of Si-QLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.