Abstract

Linear regularization has been applied to the HL-2A infrared imaging bolometer to reconstruct local plasma emission with one-dimensional (1D) and three-dimensional (3D) modeling under the assumption of toroidal symmetry. In the 3D modeling, a new method to calculate the detector point response function is introduced. This method can be adapted to an arbitrarily shaped pinhole. With the full 3D treatment of the detector geometry, up to 50% of the mean-squared error is reduced compared with the 1D modeling. This is attributed to the effects of finite detector size being taken into account in the 3D modeling. Meanwhile, the number of the bolometer pixels has been optimized to 20 × 20 by making a trade-off between the number of bolometer pixels and the sensitivity of the system. The plasma radiated power density distributions have been calculated as a demonstration using 1D modeling and 3D modeling, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.