Abstract

Techniques of multivariate pattern analysis (MVPA) can be used to decode the discrete experimental condition or a continuous modulator variable from measured brain activity during a particular trial. In functional magnetic resonance imaging (fMRI), trial-wise response amplitudes are sometimes estimated from the measured signal using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related designs with trials closely spaced in time, those estimates are highly variable and serially correlated due to the temporally extended shape of the hemodynamic response function (HRF). Here, we describe inverse transformed encoding modelling (ITEM), a principled approach of accounting for those serial correlations and decoding from the resulting estimates, at low computational cost and with no loss in statistical power. We use simulated data to show that ITEM outperforms the current standard approach in terms of decoding accuracy and analyze empirical data to demonstrate that ITEM is capable of visual reconstruction from fMRI signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.