Abstract

The inverse scattering transform (IST) with nonzero boundary conditions at infinity is developed for a class of 2 × 2 matrix nonlinear Schrödinger-type systems whose reductions include two equations that model certain hyperfine spin F = 1 spinor Bose-Einstein condensates, and two novel equations that were recently shown to be integrable, and that have applications in nonlinear optics and four-component fermionic condensates. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows us to develop the IST on the standard complex plane instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity, symmetries and asymptotics of the scattering eigenfunctions and scattering data are derived, and properties of the discrete spectrum are analyzed in detail. In addition, the general behavior of the soliton solutions for all four reductions is discussed, and some novel soliton solutions are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.