Abstract

This paper analyzes inverse scattering for the one-dimensional Helmholtz equation in the case where the wave speed is piecewise constant. Scattering data recorded for an arbitrarily small interval of frequencies is shown to determine the wave speed uniquely, and a direct reconstruction algorithm is presented. The algorithm is exact provided data is recorded for a sufficiently wide range of frequencies and the jump points of the wave speed are equally spaced with respect to travel time. Numerical examples show that the algorithm works also in the general case of arbitrary wave speed (either with jumps or continuously varying etc) giving progressively more accurate approximations as the range of recorded frequencies increases. A key underlying theoretical insight is to associate scattering data to compositions of automorphisms of the unit disk, which are in turn related to orthogonal polynomials on the unit circle. The algorithm exploits the three-term recurrence of orthogonal polynomials to reduce the required computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.