Abstract

The inverse scattering problem for the one-dimensional Helmholtz wave equation is studied. The equation is reduced to a Fresnel set that describes multiple bulk reflection and is similar to the coupled-wave equations. The inverse scattering problem is equivalent to coupled Gel'fand-Levitan-Marchenko integral equations. In the discrete representation its matrix has Töplitz symmetry, and the fast inner bordering method can be applied for its inversion. Previously the method was developed for the design of fiber Bragg gratings. The testing example of a short Bragg reflector with deep modulation demonstrates the high efficiency of refractive-index reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.