Abstract

A new methodology for the synthesis and functionalization of nanometer-sized colloidal particles consisting of well-defined, water-soluble, functional polymers with narrow molecular weight distribution (M(w)/M(n) < 1.3) was developed, utilizing atom transfer radical polymerization (ATRP) of water-soluble monomers in an inverse miniemulsion. The optional introduction of a disulfide-functionalized cross-linker allowed for the synthesis of cross-linked (bio)degradable nanogels. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements indicated that these particles possessed excellent colloidal stability. ATRP in inverse miniemulsion led to materials with several desirable features. The colloidal particles preserved a high degree of halogen chain-end functionality, which enabled further functionalization. Cross-linked nanogels with a uniformly cross-linked network were prepared. They were degraded to individual polymeric chains with relatively narrow molecular weight distribution (M(w)/M(n) < 1.5) in a reducing environment. Higher colloidal stability, higher swelling ratios, and better controlled degradability indicated that the nanogels prepared by ATRP were superior to their corresponding counterparts prepared by conventional free radical polymerization (RP) in inverse miniemulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.