Abstract

This article presents a methodology based on genetic algorithms (GA) optimization with a three-dimensional numerical solution to the diffusion model obtained by using the finite volume method (FVM) for determining the effective moisture diffusivity in lumber. The objective or error function between measured and simulated drying curves was obtained, and the effective moisture diffusivity parameters with greatest correspondence between measured and estimated values were obtained. As a result, a new equation for effective moisture diffusivity was proposed, which depends on lumber moisture content and drying temperature. Effective moisture diffusivities ranged from 1.120 × 10-9 to 1.277 × 10-8 m2/s. Finally, the proposed coefficients were validated by experiments. The drying kinetics were successfully simulated with the optimized effective moisture diffusivity model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.