Abstract
We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.