Abstract

Inverse design strategies have proven highly useful for the discovery of interaction potentials that prompt self-assembly of a variety of interesting structures. However, often the optimized particle interactions do not have a direct relationship to experimental systems. In this work, we show that Relative Entropy minimization is able to discover physically meaningful parameter sets for a model interaction built from depletion attraction and electrostatic repulsion that yield self-assembly of size-specific clusters. We then explore the sensitivity of the optimized interaction potentials with respect to deviations in the underlying physical quantities, showing that clustering behavior is largely preserved even as the optimized parameters are perturbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.