Abstract

Inverse data envelopment analysis (DEA) is a reversed optimization problem that can serve as a useful planning tool for managerial decisions by providing information such as how much resources (or outcomes) should be invested (or produced) to achieve a desired level of competitiveness whereas the conventional DEA focuses mainly on a post-hoc assessment of the organizational performance. Inverse DEA studies however are based on an assumption that the efficiency level of observed decision making units (DMUs) will not change within the period of interest, which in fact confines the use of inverse DEA to a sensitivity analysis by simply addressing what alternative levels of input and/or output would have been possible to result in the same efficiency score obtained. In this paper, we discuss an inverse DEA problem considering expected changes of the production frontier in the future by integrating the inverse optimization problem with a time series application of DEA so that it can be an ex-ante decision support tool for the new product target setting practices. We use an example of the vehicle engine development case to demonstrate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.