Abstract

In this work, a model order reduction (MOR) technique for a linear multivariable system is proposed using invasive weed optimization (IWO). This technique is applied with the combined advantages of retaining the dominant poles and the error minimization. The state space matrices of the reduced order system are chosen such that the dominant eigenvalues of the full order system are unchanged. The other system parameters are chosen using the invasive weed optimization with objective function to minimize the mean squared errors between the outputs of the full order system and the outputs of the reduced order model when the inputs are unit step. The proposed algorithm has been applied successfully, a 10th order Multiple-Input–Multiple-Output (MIMO) linear model for a practical power system was reduced to a 3rd order and compared with recently published work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.