Abstract

Summary The future increase in the atmospheric CO2 concentration is likely to affect the growth and performance of submerged freshwater macrophytes because of higher concentrations of free CO2 in the water at air equilibrium. We measured the plastic responses to free CO2 and light for several traits of four invasive aquatic plants (Elodea canadensis, Egeria densa, Hydrilla verticillata and Ceratophyllum demersum) that use bicarbonate. The plants were grown in standard culture media at either high (HiC, c. 50 μmol L−1) or low concentrations of free CO2 (LowC, c. 19 μmol L−1) combined with high (HiL, c. 150 μmol m−2 s−1) or low (LowL, c. 21 μmol m−2 s−1) light intensity in a 2 × 2 factorial experiment. We compared the relative growth rate (RGR), several morphological traits, the photosynthetic response to light intensity and the bicarbonate uptake capacity of the four species. For every trait measured, we established plasticity indices for light and CO2 availability. Light intensity had a greater effect than CO2 concentration on all species. The RGR of all four species was higher at high light intensity, and photosynthetic light responses acclimated to low light with a lower light compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability in all four species. As the growth and photosynthesis of the four invasive bicarbonate users were only slightly affected by the CO2 availability in air‐equilibrated water, the future rise in atmospheric CO2 is unlikely to exacerbate their invasive behaviour and may even reduce their competitiveness against species unable to use bicarbonate, especially at limiting light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.