Abstract

To evaluate the direct effect of human cyclooxygenase-2 (hCox-2) on human breast tumor cell proliferation, invasion, and angiogenesis, hCox-2 cDNA was transfected into slow growing, non-metastatic MCF-7 human breast tumor cells that express low levels of Cox-2. Two stable transfectant clones, designated MCF-7/hCox-2 clones 8 and 10, had significantly decreased (P<0.05) doubling time, with two-fold greater number of cells during exponential growth compared to the MCF-7/vector control. Proliferation of both of the MCF-7/hCox-2 clones was significantly inhibited in a time- and dose-dependent manner by celecoxib. The MCF-7/hCox-2 clones 8 and 10 formed larger and greater numbers of colonies in soft agar than the MCF-7/vector control, with a corresponding increased invasion across an artificial Matrigel basement membrane in response to recombinant human epidermal growth factor (hEGF). The MCF-7/hCox-2 clones 8 and 10 had higher mRNA levels of two splice variants of vascular endothelial growth factor (VEGF), V145 and V165. These results demonstrate that hCox-2 directly increases breast tumor cell proliferation, stimulates invasion across a basement membrane, and induces synthesis of specific heparin binding splice variants of VEGF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.