Abstract

We provide a precise description of the lattice of invariant subspaces of composition operators acting on the classical Hardy space, whose inducing symbol is a parabolic non-automorphism. This is achieved with an explicit isomorphism between the Hardy space and the Sobolev Banach algebra $W^{1,2}[0,\infty)$ that induces a bijection between the lattice of the composition operator and the closed ideals of $W^{1,2}[0,\infty)$. In particular, each invariant subspace of parabolic non-automorphism composition operator always consists of the closed span of a set of eigenfunctions. As a consequence, such composition operators have no non-trivial reducing subspaces. For the sake of completeness, we also include a characterization of the closed ideals of the Banach algebra $W^{1,2}[0,\infty)$. Although such a characterization is known, the proof we provide here is somehow different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.