Abstract

An axisymmetric turbulent free jet described by an effective viscosity, which is the sum of the kinematic viscosity and the kinematic eddy viscosity, is investigated. The conservation laws of the jet are derived using the multiplier method. A second conserved vector, in addition to the elementary conserved vector, exists provided the effective viscosity has a special form. The Lie point symmetry associated with the elementary conserved vector is obtained and used to generate the invariant solution. The analytical solution is derived when the effective viscosity depends only on the distance along the jet. The numerical solution is obtained when the effective viscosity depends also on the distance across the jet. The eddy viscosity causes an apparent increase in the viscosity of the mean flow which produces an increase in the width of the jet due to an increase in diffusion and also a decrease in the maximum mean velocity along the axis of the jet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.