Abstract

In this paper we consider the semigroup generated by the self-maps on the open convex cone of positive definite matrices of translations, congruence transformations and matrix inversion that includes symplectic Hamiltonians and show that every member of the semigroup contracts any invariant metric distance inherited from a symmetric gauge function. This extends the results of Bougerol for the Riemannian metric and of Liverani–Wojtkowski for the Thompson part metric. A uniform upper bound of the Lipschitz contraction constant for a member of the semigroup is given in terms of the minimum eigenvalues of its determining matrices. We apply this result to a variety of nonlinear equations including Stein and Riccati equations for uniqueness and existence of positive definite solutions and find a new convergence analysis of iterative algorithms for the positive definite solution depending only on the least contraction coefficient for the invariant metric from the spectral norm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.