Abstract
Let R be a discrete nonsingular equivalence relation on a standard probability space , and let V be an ergodic strongly asymptotically central automorphism of R. We prove that every V-invariant cocycle with values in a Polish group G takes values in an abelian subgroup of G. The hypotheses of this result are satisfied, for example, if A is a finite set, a closed, shift-invariant subset, V is the shift, μ a shift-invariant and ergodic probability measure on X, the two-sided tail-equivalence relation on X, a shift-invariant subrelation which is μ-nonsingular, and a shift-invariant cocycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.