Abstract

The concept of metamaterials has led to extraordinary schemes of wave propagation, which has been verified using various meta-atoms, constituent units of metamaterials, as well as applied to a number of categories in physics. Although its definition clarifies the maximum size of meta-atoms as a fraction of one wavelength, the size may vary by several orders, like from millimeters (‘macroscopic level’) to atomic scales (‘microscopic level’) for microwaves. This review surveys several patterns of parameter combinations, like permittivity and permeability in electromagnetic metamaterials, which have been achieved at either macroscopic or microscopic levels, with the similar analogy under the concept of metamaterials. Various experimental and theoretical efforts reported so far and shown here verify that the parameter identification of these values (permittivity, permeability, and refractive index) is independent of meta-atom sizes, with importance of spatial integration procedure on the order of a wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.