Abstract

As cyber threats continue to evolve in sophistication and diversity, the need for robust Intrusion Detection Systems (IDS) becomes paramount to safeguarding network integrity. This research explores the application of an innovative approach by integrating an Attention-based Convolutional Neural Network (ACNN) model with machine learning techniques to enhance the accuracy and efficiency of intrusion detection. The proposed system leverages the ACNN's ability to capture contextual dependencies in network traffic data, enabling the extraction of intricate patterns indicative of potential intrusions. The ACNN's attention mechanism focuses on relevant features within the data, improving the model's discriminative power and adaptability to dynamic cyber threats. To achieve optimal performance, the ACNN is complemented with a machine learning framework that includes feature engineering, dimensionality reduction, and classification algorithms. This integrated approach allows the system to adapt and learn from evolving attack vectors, providing a proactive defense mechanism against both known and unknown threats. The research evaluates the proposed ACNN-based IDS using benchmark datasets and real-world network traffic scenarios. Comparative analysis against traditional IDS models showcases the superiority of the ACNN in terms of detection accuracy, false positive rates, and computational efficiency. Furthermore, the system's adaptability to emerging threats is demonstrated through continuous learning and retraining mechanisms. Results indicate that the ACNN-based IDS not only exhibits superior performance but also demonstrates resilience against evasion techniques employed by malicious actors. The research findings contribute to the advancement of network security by presenting a cuttingedge solution that combines deep learning and machine learning for effective and adaptive intrusion detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.