Abstract

Cabbage (Brassica oleracea var. capitata) is the most popular leafy vegetable; however, its quality as a vegetable depends on its growth stage. Premature bolting triggered by low temperatures leads to a reduction of yield and quality of cabbage. Late bolting is preferred by growers to increase market value, whereas early bolting plants are ideal for quality seed production. Herein, we reported a gene BolPrx.2 annotated as Q9FLC0 in the SwissPort, involved in bolting time variation in cabbage and designed molecular markers to characterize early- and late-bolting cabbage populations and lines. The BolPrx.2 gene encodes a peroxidase domain and has been identified as a candidate showed almost similar effect as the previously reported MADS-box domain-containing FLC genes for controlling bolting time. An insertion/deletion (InDel) variation in intron1 has been identified as a causal factor for variation between late- and early-bolting inbred lines. By using this InDel, we designed molecular markers for characterizing the bolting time variation and validated them with 141 F2 generation plants. These markers predicted about 84% of the variation within the population and commercial lines. Therefore, it could be a potential genetic tool to predict bolting time variation and support marker-assisted back crossing (MABC) programs for developing desired bolting types of cabbage cultivars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.