Abstract
Symplectic topology has a long history. It has its roots in classical mechanics and geometric optics and in its modern guise has many connections to other fields of mathematics and theoretical physics ranging from dynamical systems, low-dimensional topology, algebraic and complex geometry, representation theory, and homological algebra, to classical and quantum mechanics, string theory, and mirror symmetry. One of the origins of the subject is the study of the equations of motion arising from the Euler–Lagrange equations of a one-dimensional variational problem. The Hamiltonian formalism arising from a Legendre transformation leads to the notion of a ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.