Abstract
After a review of basic equations of fluid dynamics, the Aeroacoustic analogy of Lighthill is derived. This analogy describes the sound field generated by a complex flow from the point of view of a listener immerged in a uniform stagnant fluid. The concept of monopole, dipole and quadrupole are introduced. The scaling of the sound power generated by a subsonic free jet is explained, providing an example of the use of the integral formulation of the analogy. The influence of the Doppler Effect on the radiation of sound by a moving source is explained. By considering the noise generated by a free jet in a bubbly liquid, we illustrate the importance of the choice of the aeroacoustic variable in an aeroacoustic analogy. This provides some insight into the usefulness of alternative formulations, such as the Vortex Sound Theory. The energy corrolary of Howe based on the Vortex Sound Theory appears to be the most suitable theory to understand various aspects of self-sustained oscillation due to the coupling of vortex shedding with acoustic standing waves in a resonator. This approach is used to analyse the convective energy losses at an open pipe termination, human whistling, flow instabilities in diffusers, pulsations in pipe systems with deep closed side branches and the whistling of corrugated pipes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.