Abstract

Application of evolutionary computation techniques is relatively novel for machine learning. Motivated by different types of evolutionary computation techniques, different types of automatic programming were proposed. Biogeography-Based Optimization (BBO) is a new evolutionary algorithm that is inspired by the science of biogeography and has been shown to be competitive to other population-based algorithms. Inspired by biogeography theory and previous results, in this paper Biogeography-Based Programming (BBP) is proposed as a new type of automatic programming for creating polynomial regression models. In order to show the effectiveness of the proposed BBP, a number of experiments were carried out on a suite set of benchmark functions and the results were also compared with several existing automatic programming algorithms. Furthermore, sensitivity analysis was performed for the parameter settings of the proposed BBP. The results indicate that the proposed model is promising in terms of success rate and accuracy and it performs better than other algorithms investigated in this consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.