Abstract
Introduction: In recent years, COVID -19 has been recognized as a health threat. Despite vaccination, people still get the disease because the new variants have mutations in their genomes that allow them to bind to host receptors and evade the immune system’s responses. Therefore, the main aim of this study was to use bioinformatics tools to introduce a rapid and practical vaccine to fight against these diverse mutations in different SARS -CoV-2 strains. Method: To epitopes mapping, 32 different spike protein variants were retrieved. We then used the Immune Epitope Database (IEDB), NetCTL, and NetMHCIIpan to predict T and B cell epitopes. The vaccine based on protected epitopes was evaluated in terms of antigenicity, allergenicity, toxicity, solubility, physicochemical properties, population coverage, and secondary structure with relevant servers. Modeling using Robetta and docking with Toll -like receptor (TLR3) were performed using Cluspro, PatchDock, and FireDock, respectively. Results: After detailed evaluations, all the results confirmed the optimal quality of the vaccine. According to further investigations, this structure is similar to native proteins and there is a stable and strong interaction between the vaccine and the receptor. Based on molecular dynamics simulation, structural compactness and stability in binding were also observed. In addition, the immune simulation showed that the vaccine can stimulate immune responses similar to real conditions. Finally, codon optimization and in silico cloning confirmed efficient expression in Escherichia coli . Conclusion: Based on the obtained results, the designed multi -epitope vaccine can serve as a prophylactic candidate against SARS -CoV-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.