Abstract

It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 μm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.