Abstract
In recent years, image treatment has been appraised as a very powerful tool to facilitate ichnological analysis, especially in marine cores of modern sediments, supporting the determination of certain ichnological features. However, it is still a new approach and detailed research is necessary to encounter a faster and more efficient method. The present study focuses on two image processing techniques, Fiji and ICY, and their comparison with a refined version of the well-established high-resolution image treatment. Strengths and weaknesses of the methodologies for the determination of three main features were explored: i) visibility of trace fossils; ii) quantification of the percentage of bioturbated surface, and iii) penetration depth estimation. Refined high-resolution image treatment gives the best results for enhanced visibility of trace fossils, whereas Fiji is found to be a sound and rapid option. One disadvantage shared by Fiji and ICY is the binary character of the produced images, which may impede later ichnotaxonomical differentiation. Both Fiji and ICY (+ Fiji) are rapid alternatives for quantifying the bulk amount of bioturbated surface. The Magic Wand Method (+ RefineEdge), based on high-resolution image treatment, provides good results regardless of the contrast of the images, and it additionally allows for a more detailed quantification. The semi-automatic character of ICY favors quick estimation of penetration depth and facilitates differentiation between distinct tracemaker communities, based on a rapid quantification of pixel values. Thus, Fiji and ICY methods offer good results and are much less time-consuming than high-resolution image treatment. They are proposed as faster alternatives for the estimation of ichnological features, especially useful at the beginning stages of research, when a large number of samples must be analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.